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1 Regularity Assumptions

Assumption 1. Treatment R is completely randomized and T ∗D(a) = TD(a)
if a subject never changes treatment.
Assumption 2. Given (R = 0,Z, U = 1, TP = s), that is, a subject in the
control arm has disease progression at time s and covariates Z, or (R =
1,Z, U = 1, TP = s), NV (s+t), t ≥ 0, is independent of the potential outcomes
{T ∗D(0), T ∗D(1)}.
Assumption 3. Given (R = 0,X, U = 0), that is, a subject in the control
arm has baseline covariates X and is progression free before death, or (R =
1,X, U = 0), NV (t) is independent of the potential outcomes {T ∗D(0), T ∗D(1)}.
Assumption 4. The censoring time is independent of TD, TG, and TP given
the observed covariates.
Assumption 5. For progression subjects, TP is independent of Z given R and
X.
Assumption 6. The true parameters values of the β’s, γ’s and α’s, still de-
noted as Φ ≡ (βT0 , β1,β

T
2 , γT0 ,γ

T
1 ,γ

T
2 ,α

T )T , belong to a bounded set in real
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Euclidean space. Moreover, the true cumulative baseline functions (H0, H1, H2)
are continuously differentiable in [0, τ ] with H ′k(t) > 0, k = 0, 1, 2, where τ is
the study duration.
Assumption 7. If there is some constant ν such that νT (1, R,Z) = 0 with
probability one, then ν = 0. Additionally, we assume (R,Z) to have a bounded
support and there exits a continuous component of X such that its coefficient
in model (1) is nonzero.
Assumption 8. With probability one, P (C ≥ τ |R,Z) > 0 and P (V =
1|R,Z, TP ) ∈ (µ0, µ1) for some constant 0 < µ0 < µ1 < 1.

2 Proof of Theorem 1–3

Proof of Theorem 1. Let ln(Φ,H1, H2, H3) denote the observed log-likelihood
function for (Φ,H) and H{t} = {H(t) −H(t−)}. First, it is easy to see that

if Ĥk{t} = ∞, then ln(Φ̂, Ĥ1, Ĥ2, Ĥ3) = −∞. Moreover, this also holds if the

jump size of Ĥk at the corresponding events is zero. Thus, the jump sizes
of Ĥk at the corresponding events are positive and finite so the derivatives
of ln(Φ,H1, H2, H3) with respect to each jump size of Ĥk should be zero at

(Φ̂, Ĥ1, Ĥ2, Ĥ3). This gives

Ĥ0{Yi} =

∑
Gj=1 I(Yj = Yi){∑

Gj=1,Yj≥Yi e
η̂Dj(Yi) +

∑
Gj=4,Yj≥Yi

(1−p̂uj)ŜDj(Yj)e
η̂Dj(Yi)

(1−p̂uj)ŜDj(Yj)+p̂uj ŜUj(Yj)

}(1)

Ĥ1{Wi} =

∑
Gj∈{2,3} I(Wj = Wi){∑

Gj∈{2,3},Wj≥Wi
eη̂Pj(Wi) +

∑
Gj=4,Yj≥Wi

p̂uj ŜPj(Yj)e
η̂Pj(Wi)

(1−p̂uj)ŜDj(Yj)+p̂uj ŜPj(Yj)

}
(2)

Ĥ2{(Y −W )i} =

∑
Gj=1 I((Y −W )j = (Y −W )i){∑

Gj∈{2,3},(Y−W )j≥(Y−W )i
eη̂Gj((Y−W )i)

} (3)

where η̂Dj(t) = β̂01Rj+β̂02Vj(t)+β̂03Vj(t)Rj+ γ̂T0 Xj , η̂Pj(t) = β̂1Rj+ γ̂T1 Xj ,

η̂Gj(t) = β̂21Rj + β̂22Vj(t+TP ) + β̂23Vj(t+TP )Rj + γ̂T2 (Zj ,Wj). In addition,

we let ŜDj(t) = exp{−
∫ t
0
eη̂Dj(s)dĤ0(s)}, ŜPj(t) = exp{−

∫ t
0
eη̂Pj(s)dĤ1(s)},

and p̂uj = P̂ (U = 1|Rj ,Xj). Equation (1) implies Ĥ0{s} ≤
∑
Gj=1 I(Yj =

s)/
∑
Gj=1,Yj≥s c0, where c0 is a positive lower bound of eη̂Dj(t). Since

1

n

∑
Gj=1,Yj≥s

1→ E[I(U = 0, · ≤ C, · ≥ s)] > 0,
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we obtain

lim sup
n
Ĥ0(τ) ≤ lim sup

n

n−1
∑n
i=1

∑n
j=1 I(Gj = 1, Yj = Yi)

c0n−1
∑
Gj=1,Yj≥s 1

<∞.

Similarly, equations (2) and (3) yield that lim supn Ĥ1(τ) and lim supn Ĥ2(τ)
are both finite.

By Helly’s selection theorem, for any subsequence, we can choose a further
subsequence such that Ĥk weakly converges to an increasing function H∗k for

k = 1, 2, 3. Moreover, we can assume θ̂ → θ∗. We then show H∗k = Hk and

Φ∗ = Φ. To this end, we construct H̃k such that H̃k has jumps at the same
events as Ĥk; moreover, the jumps of H̃k is the right-hand side of (1) to
(3) except that the parameters on the right-hand side are set to be the true
values. It is straightforward to verify that H̃k converges uniformly to the true
function Hk. Furthermore, we can show that dĤk/dH̃k converges uniformly to
dH∗k/dHk.

Since ln(Φ̂, Ĥ1, Ĥ2, Ĥ3) − ln(Φ, H̃1, H̃2, H̃3) ≥ 0, we take limits and then
expectation on both sides, which leads to the conclusion that the Kullback–
Leilber information between (θ∗, H∗1 , H

∗
2 , H

∗
3 ) and (θ,H1, H2, H3) is non-positive.

As the Kullback–Leilber information is always non-negative, this immediately
implies that the log-likelihood function at (θ∗, H∗1 , H

∗
2 , H

∗
3 ) is equal to the log-

likelihood function at (θ,H1, H2, H3) with probability one. Thus, this equality
holds for all subjects in Groups 1 to 4 as defined in Section 3.2. Comparing
the differences of the log-likelihood functions from subjects in Group 2 and
Group 3, we have

(H∗2 )′(G)eβ
∗
21R+β∗

22V (Y )+β∗
23V (Y )R+γ∗

2
T (ZT ,W )T

= (H2)′(G)eβ21R+β22V (Y )+β23V (Y )R+γ2
T (ZT ,W )T ,

so by Assumptions 7 and 8, H∗2 = H2, β
∗
21 = β21, β

∗
22 = β22, β∗23 = β23 and

γ∗2 = γ2. Now in the log-likelihood for subjects in Group 1, we let Y = 0 and
obtain

(H∗0 )′(0)eβ
∗
01R+γ∗

0
TX

1 + eα
∗
0+α

∗
1R+α∗

2
TX

=
(H0)′(0)eβ01R+γ0

TX

1 + eα0+α1R+α2
TX

.

Similarly, in the log-likelihood for subjects in Group 3, we let W = 0 and
Y = 0 and obtain

(H∗1 )′(0)eβ
∗
1R+γ∗

1
TXeα

∗
0+α

∗
1R+α∗

2
TX

1 + eα
∗
0+α

∗
1R+α∗

2
TX

=
(H1)′(0)eβ1R+γ1

TXeα0+α1R+α2
TX

1 + eα0+α1R+α2
TX

.

Comparing the above equations, so α∗1 = α1, α
∗
2 = α2. Since one component of

X is continuous and has non-zero coefficient in α2, the above equation gives
α∗0 = α0. Finally, after integrating the likelihood equality function for Group
2 for W from 0 to Y , we have

[1− exp{−H∗1 (Y )eβ
∗
1R+γ∗

1
TX}]eα∗

0+α
∗
1R+α∗

2
TX

1 + eα
∗
0+α

∗
1R+α∗

2
TX
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=
[1− exp{−H1(Y )eβ0R+γ1

TX}]eα∗
0+α

∗
1R+α∗

2
TX

1 + eα0+α1+α2
TX

.

Thus, H∗1 = H1 and β∗1 = β1, γ
∗
1 = γ1. On the other hand, integrating the

likelihood equality function for subjects in Group 1 for Y from 0 to Y gives

1− exp{−
∫ Y
0
eβ

∗
01R+β∗

02V (s)+β∗
03V (s)R+γ∗

0
TXdH∗0 (s)}

1 + eα
∗
0+α

∗
1R+α∗

2
TX

=
1− exp{−

∫ Y
0
eβ01R+β02V (s)+β03V (s)R+γ0

TXdH∗0 (s)}
1 + eα0+α1R+α2

TX

so β∗0 = β0, γ
∗
0 = γ0 and H∗0 = H0.

We have proved that θ̂ → θ and Ĥk converges weakly to Hk. The latter can
be further strengthened to uniform convergence in [0, τ ] since Hk is continuous.
Therefore, Theorem 1 holds.

Proof of Theorem 2. The proof of Theorem 2 follows from the same ar-
gument in proving Theorem 2 in [2]. In particular, Assumptions 1-4 and 6
in Appendix hold for our specific models. Their first identifiability condition
(C.5) has been verified in the proof of Theorem 1. To complete the proof, we
only need to verify the second identifiability of their condition (C.7). Con-
sider the score function along a sub model Hk + ε

∫
fkdHk and Φ+ εν where

ν = (β0,γ0, β1,γ1,β2,γ2,α). If this score function is zero with probability
one, then we need to show that fk = 0 and ν = 0. For subjects in Group 2,
the score equation is

0 = f1(W ) + ηP −
∫W
0
f1(t)eηP dH1(t)−H1(W )eηP ηP + f2(G) + ηG(G)

−
∫ G
0
f2(t)eηG(t)dH2(t)−

∫ G
0
eηG(t)ηG(t)dH2(t) +

e
α0+α1R+αT

2
X
(ξ0+ξ1R+ξT2 X)

(1+e
α0+α1R+αT

2
X
)2

.

For subjects in Group 3, we obtain the score equation to be

0 = f1(W ) + ηP −
∫ W

0

f1(t)eηP dH1(t)−H1(W )eηP ηP −
∫ G

0

f2(t)eηG(t)dH2(t)

−
∫ G

0

eηG(t)ηG(t)dH2(t) +
eα0+α1R+αT2 X(ξ0 + ξ1R+ ξT2 X)

(1 + eα0+α1R+αT2 X)2
. (4)

The difference between (4) and (4) gives f2(G)+ηG(G) = 0, so by Assumption
7, f2 = 0,β2 = 0 and γ2 = 0.

Using this result and equation (4), the score equation for subjects in Group
4 becomes∫ Y

0

f0(t)eηD(t)dH0(t) +

∫ Y

0

eηD(t)ηD(t)dH0(t) +
eα0+α1R+αT2 X(α0 + α1R+ αT2 X)

(1 + eα0+α1R+αT2 X)2
= 0.

(5)
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On the other hand, for subjects in Group 1,

f0(Y ) + ηD(Y )−
∫ Y

0

f0(t)eηD(t)dH0(t)−
∫ Y

0

eηD(t)ηD(t)dH0(t)

−e
α0+α1R+αT2 X(α0 + α1R+ αT2 X)

(1 + eα0+α1R+αT2 X)2
= 0. (6)

Then the difference between (5) and (6) gives f0(Y )+ηD(Y ) = 0, which further
gives f0 = 0,β0 = 0 and γ0 = 0. As a result, (6) becomes α0+α1R+αT2 X = 0
and hence α = 0. This further combined with equation (4) gives f1 = 0,
β1 = 0, and γ1 = 0. We have verified condition (C.7) in [2]. According to
their results, our Theorem 2 holds.

Moreover, from Theorem 3 in [2], we also conclude that the inverse of the
observed information is a consistent estimator for the asymptotic covariance.
Proof of Theorem 3. The proof of Theorem 3 follows the proof of Theorem
3 in [1] so we omit the details here.
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